APPROXIMATE CALCULATION OF PARAMETERS AT
THE THROAT OF A HYPERSONIC WAKE
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§1. When a blunt body moves at high speed the perturbed region of the flow is a mixture of gases formed
by physicochemical transformation. It is very difficult to calculate such a complex region as the near wake
under such conditions.

The near wake is a comparatively short region where rapid changes occur in the gas streamline direc-
tion under the substantial influence of viscosity. It is therefore postulated that the distribution of pressure,
mean-mass velocity, and enthalpy are affected predominantly by dynamic and thermal effects, without allow-
ance for the effects of chemical transformations, and computation of the near wake is performed in two stages.
In the first stage we calculate the distributions of pressure, velocity, and enthalpy in the near wake, with the
true flow of the gas mixture replaced by an effective perfect gas flow. In the second stage we calculate the
composition of the gas mixture and the temperature along the streamlines (or surfaces) for fixed distributions
of pressure, velocity, and enthalpy (as determined in the first stage).

In calculating the near wake for a perfect gas we consider three zones (Fig. 1): the zone of upstream
influence of base pressure (enclosed between sections 0—2 and 3-4), a constant-pressure mixing zone (be-
tween sections 4—5 and 6—7), and a compression zone (between sections 6 —7 and 9—10). At section 0—1 we
consider all the parameters to be unknown from calculation of the boundary layer on the body.

The compression zone is considered to be a region of interaction between the viscous and the inviscid
flow. The viscous flow is described by the laminar boundary-layer system of equations. The dynamic viscosity
is calculated from the relation u/ue = h/he, where h is the enthalpy; the subscript e refers to the outer edge
of the wake. A multimoment integral method [1] is used for the calculation. Here the velocity and enthalpy
profiles are given in the form of polynomials of second degree in the transformed radial variable
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where § is the wake radius. The inviscid flow is calculated approximately from the relations for one-dimen-
sional isentropic motion of a perfect gas. The molecular weight m of the effective perfect gas flow and its
adiabatic index w are calculated from the relations
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where R is the universal gas constant; T is the temperature (the subscript number here and below corresponds
to the point number on Fig. 1). The last relation was obtained from the condition that the enthalpy of the ef-
fective inviscid flow of a perfect gas should be the same as that of the mixture of gases at point 2 (this is cal-
culated below).

To calculate the mixing zone we use an approximate solution of the system of equations for the constant-
pressure laminar mixing layer, as derived in {2]. The solutions for the mixing and compression zones are
matched at section 6 —7 (whose coordinates are determined during solution of the total problem), using the
continuity of the total thickness of the viscous layer at this section and the radial coordinate of the dividing
streamline 4—6—8, of all parameters at the outer boundary (at point 7), and of the velocity and enthalpy on the
dividing streamline (at point 6).
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The initial thickness of the mixing layer is determined by equating the displacement thickness of the un-
perturbed boundary layer and the mixing layer:
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Then point 2 inside the boundary layer is determined by equating the mass flux passing through sections
0—2 and 4—5:
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The gas parameters at point 3 are determined as follows. According to the data of [3], the pressure drop in
the wall layer near the corner point is such that the wall streamline reaches the corner point with sonic speed.
Using this result and allowing for the fact (which follows from the system of equations for the inviscid re-
gion describing flow near a corner point [3]) that in this region

dplog = 0,

we determine that the pressure at section 3~4 is constant and that the pressure drop between sections 0—2
and 3—4 is equal to the critical value,
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The velocity and enthalpy at point 3 are calculated from the relations for isentropic motion of a gas,
allowing for this pressure drop.

The unique solution of the near-wake problem is derived from the condition that the solution must pass
through the singular saddle point of the system of differential equations for the compression zone.

§2. The fields for concentrations of individual components and the temperature of the mixture of gases in
the viscous near wake are calculated along streamlines. Here the fields of pressure p, vectorial components
Vy» Vp, and enthalpy h are regarded as given. These quantities are taken from calculation of the near wake
according to the scheme described in Sec. 1. The profile of relative mass concentration of the i-th component
at the initial section (4—5) of the constant-pressure region is given in the form of a second-degree polynomial:
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The length of the upstream base pressure influence zone is small, amounting only to several boundary-
layer thicknesses [3]. In the region between sections 0—2 and 45 there is a sharp pressure drop from the
value on the body ahead of the base. Therefore, we can consider that the chemical reactions are frozen in the
motion of the mixture in this region. In this case the number of particles between these sections in the flow
must be equal:
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With the requirement that &, = &, £j5 = &5, and allowing for Eq. (2.2), we have three conditions for cal-
culating the coefficients of the polynomials (2.1) 2j, bj, ¢j. Thus, the concentrations of individual components
at the initial section of the mixing layer are determined. The temperature at this section is calculated from
the relation
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where h;(T) is the enthalpy of the i-th component.

The first stream tube is extended along the dividing streamline 4—6—8 and later along the wake axis.
Its thickness is determined by the condition that the mass in the stream tube be constant. A second stream
tube is drawn out along the boundary of the first, and so on.

Along the stream tubes the equations for conservation of concentrations of the individual components
PVd851dS =Wy

are integrated, where j is the stream tube number; S are coordinates reckoned along the tubes; Wij is the rate
of conversion of the i-th component as a result of physicochemical transformations. The value of W;j is cal-
culated from the relation
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where s is the number of reactions; vy, and V?k are the stoichiometric coefficients for the i-th component in
the k-th reaction in the forward and reverse directions, respectively; and Ky, Kpk are the rate constants for
the forward and reverse reactions.

The temperature is calculated from Eq. (2.3) and the mass density is calculated from the equation of
state
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The calculation is carried out up to section 9—10,

§3. We now present the computational data referring to the two versions of the motion of a blunt cone in
air. The calculation is based on the following system of physicochemical processes:
0, +M220+M, N, +ME2N+ M,
NO+MZN+0+M,NO+O02ZN + 0,
N: +0ZNO + N, N, + 0, 22N0, N + 0 & NO* + ¢,

where M is the third particle. The rate constants for these reactions were taken from [4].

The boundary-layer parameters at section 0 —2 were calculated approximately using the following tech~
nique.

1. The stream tube method of [5] was used to calculate the inviscid nonequilibrium fiow over the body.

2. The data of [6] were used to calculate the relative mass flow rate of gas
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where rg is the nose radius and the subscript « refers to the parameters of the undisturbed stream.

3. It is assumed that the velocity profile in the boundary layer on the conical body surface is given by the
Blagius function

vlvy = ¢'(n), 3.1



where ¢(n) is the solution of the Blasius problem
20" + 9" =0, ¢(0) = ¢'(0) = 9, ¢'(0) = 1
the relation between the total enthalpy and the velocity is given by the Crocco integral

He=(H, — Ho)—g- <~ H, H=h-132, 3.2)

and the relation between the physical coordinate q and the Blasius coordinate n under these assumptions will
take the form
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The boundary-layer thickness is calculated from Eq. (3.3) with 7 =14 = 5(p(ny) = 3.28, ¢'(n) ~ 1, ¢"(1,) = 0).

4, To evaluate the concentrations of individual components at point 2 we assume that the concentration
profiles are linear near the walls. The transverse derivative of concentration at the wall is evaluated from
the simple solution given in [7] and valid for the case of binary diffusion and chemical reactions:
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where Sm;j is the Schmidt number for the i-th component. All the parameters with subscripts 1 are deter-
mined from calculation of the inviscid nonequilibrium flow over the body, allowing for nonuniformity of the
inviscid flow. Thus, in this approach to calculating the concentrations inside the boundary layer, the non-
equilibrium nature of the physicochemical transformation is taken into account only via its influence on the
inviscid region parameters.

The Schmidi pumber in the calculation was assumed to be 0.7 for the neutral components and 0.35 for fhe
charged components.

" Relations (1.3), (1.4), and (2.3)-(3.4) were used to calculate the coordinates of point 2 and the values at
that point of the velocity, enthalpy, temperature, and concentrations of the individual components. Equations
(1.1) and (1.2) were used to calculate the adiabatic index of the effective perfect gas flow.

For simplicity in the calculations, the wake was assumed to be isoenergetic with a total enthalpy of H,.

Figures 2-4 show the results of calculating the parameters behind spherically blunted cones with semi-
vertex angle 10°, moving in the earth's atmosphere at altitude 50 km with surface temperature 1000°K. The
solid curves in Figs. 2-4 refer to the case r¢ = 0.7 m, ry =1 m, Vv, =5.5 km/sec, and the dashed curves
refer to the case rg = 0.15 m, 14 = 0.5 m, Vo = 6.5 km /sec. Figure 2 shows the dividing streamline, The
notation isx =x/ry, r = r/r, Figure3 shows the distributions of temperature (curves 1) and electron den-
sity (curves 2) along the dividing streamline. Figure 4 shows the profiles of these parameters in the section

containing the rear stagnation point.

The values of enthalpy obtained in the calculation at the rear stagnation point, referred to the total en-
thalpy of the incident flow, are 0.274 and 0.328. The corresponding values of equilibrium temperature are
2500 and 2950°K, which differ appreciably from the data of Figs. 3 and 4. Hence, it follows that the influence
of the nonequilibrium nature of the physicochemical processes in the viscous near wake is appreciable.

Consequently, the approximate method considered is based on computing only the decisive effects, i.e.,
the effects of viscosity and heat conduction (Sec. 1) and of the nonequilibrium nature of the physicochemical
transformations (Sec. 2). Since there are at present no experimental data or data of more accurate calculations
of the composition of gas mixtures in the near wake to justify this technique, we are restricted only to the
statement that the solution of the dynamic problem agrees with the data of other papers.

The main difference of the methods considered in Sec. 1 from methods suggested in [1, 8] is, first of
all, in calculating the influence of base pressure upstream and, secondly, in using conditions (1.3) and (1.4) to
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determine the initial wake thickness. Calculations show that for blunt bodies and large Reynolds number (Re.,)
the base pressure values are close to the corresponding values calculated using the method of [8], which, as
was shown in [8], agree with experimental data. However, the present method has a number of substantial
advantages. Since we cannot discuss these in detail here, we note only that the calculated values of the mass
of gas absorbed by the viscous wake are appreciably lower, which agrees qualitatively with the data of more
accurate calculations in [9], and the present method, in distinction from the methods of [1, 8], allows one to
calculate the near wake over a considerably wider range of external conditions, and, in particular, in difficult
cases like small Reynolds number (~10% and slender bodies moving at hypersonic speed.

Figure 5 compares the calculated pressure distribution along the wake, obtained using a more rigorous
method - numerical integration of the complete system of Navier —Stokes equations for a perfect gas [10] (solid
curve). The calculated data refer to a short cone with spherical blunting (semivertex angle of 10°), moving with
My = 15, Reg = 1.3 10%. In the calculation by the above method the same conditions were given at the initial
section 0—1 as in [10] (thesc data were kindly supplied by N. S. Kokoshinskii). It is clear that there is good
interagreement between the computational data.
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